网上有关“二次函数像及性质”话题很是火热,小编也是针对二次函数像及性质寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
二次函数忧 4分(内容专业) 编辑词条 摘要一般地,自变量x和因变量y之间存在如下关系:
一般式:1:y=ax^2;+bx+c(a≠0,a、b、c为常数), 则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a) (若给出抛物线上两点及另一个条件,通常可设一般式)
2:顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k (两个式子实质一样,但初中课本上都是第一个式子)(若给出抛物线的顶点坐标或对称轴与最值,通常可设顶点式),顶点坐标为(h,k)或(-m,k)
3:交点式(与x轴):y=a(x-x1)(x-x2) (若给出抛物线与x轴的交点及对称轴与x轴的交点距离或其他一的条件,通常可设交点式)重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。)
定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:
一般式:1:y=ax^2;+bx+c(a≠0,a、b、c为常数), 则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b^2)/4a) (若给出抛物线上两点及另一个条件,通常可设一般式)
2:顶点式:y=a(x-h)^2+k或y=a(x+m)^2+k (两个式子实质一样,但初中课本上都是第一个式子)(若给出抛物线的顶点坐标或对称轴与最值,通常可设顶点式),顶点坐标为(h,k)或(-m,k)
3:交点式(与x轴):y=a(x-x1)(x-x2) (若给出抛物线与x轴的交点及对称轴与x轴的交点距离或其他一的条件,通常可设交点式)
重要概念:(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。)
二次函数表达式的右边通常为二次三项式。
x是自变量,y是x的二次函数
x1,x2=[-b±根号下(b^2-4ac)]/2a (即一元二次方程求根公式)
求根的方法还有因式分解法和配方法 编辑本段|回到顶部如何学习二次函数 1。要理解函数的意义。
2。要记住函数的几个表达形式,注意区分。
3。一般式,顶点式,交点式,等,区分对称轴,顶点,图像等的差异性。 编辑本段|回到顶部图像 在平面直角坐标系中作出二次函数y=2x的平方的图像,
可以看出,二次函数的图像是一条永无止境的抛物线。
如果所画图形准确无误,那么二次函数将是由一般式平移得到的。
注意:草图要有 1本身图像,旁边注名函数。
2画出对称轴,并注明X=什么
3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质
1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b^2)/4a )
当-b/2a=0时,P在y轴上;当Δ= b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
|a|越大,则抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号
当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时
(即ab< 0 ),对称轴在y轴右。
事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的
斜率k的值。可通过对二次函数求导得到。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
Δ= b*2-4ac>0时,抛物线与x轴有2个交点。
Δ= b*2-4ac=0时,抛物线与x轴有1个交点。
_______
Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b±√b^2-4ac 的值的相反数,乘上
虚数i,整个式子除以2a)
当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b?/4a;在{x|x<-b/2a}上是减函数,在
{x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
7.特殊值的形式
①当x=1时 y=a+b+c
②当x=-1时 y=a-b+c
③当x=2时 y=4a+2b+c
④当x=-2时 y=4a-2b+c
8.定义域:R
值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
正无穷);②[t,正无穷)
奇偶性:偶函数
周期性:无
解析式:
①y=ax^2+bx+c[一般式]
⑴a≠0
⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
⑶极值点:(-b/2a,(4ac-b^2)/4a);
⑷Δ=b^2-4ac,
Δ>0,图象与x轴交于两点:
([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
Δ=0,图象与x轴交于一点:
(-b/2a,0);
Δ<0,图象与x轴无交点;
②y=a(x-h)^2+k[顶点式]
此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X
的增大而减小
此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
用)。
三角函数上市周期函数,
二次函数不是周期函数。
y=sinx是周期函数,最小证周期为2Pai
y=x^2+2x+3不是周期函数。
y=sinx的值域为[-1,1]
y=x^+2x+3
=(x+1)^2-1+3
=(x+1)^2+2
x=-1,ymin=2
y属于[2,+无穷)
[-1,1]/=[2,+无穷)
单调性不同
y=sinx在(2kpai-pai/2,2kpai+pai/2]商单调递增,
在(2kpai+pai/2,2kpai+3pai/2]上单调递减,k:Z
y=(x+1)^2+2
在(-无穷,-1)上单调递减,在[-1,+无穷)商单调递增
二者单调区间不同。
三。对称轴不同,
y=sinx的对称轴为x=kpai+pai/2,k:Z
y=x^2的对称轴为x=0,y轴
y=sinx是奇函数,y=x^2是偶函数,奇偶性不一定相同,可能相同,也可能不同
关于“二次函数像及性质”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[admin]投稿,不代表百科号立场,如若转载,请注明出处:https://bkvjgel.cn/xwzx/202501-6219.html
评论列表(4条)
我是百科号的签约作者“admin”!
希望本篇文章《二次函数像及性质》能对你有所帮助!
本站[百科号]内容主要涵盖:国足,欧洲杯,世界杯,篮球,欧冠,亚冠,英超,足球,综合体育
本文概览:网上有关“二次函数像及性质”话题很是火热,小编也是针对二次函数像及性质寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。 二次函数忧 4...